Kd-tree and quad-tree decompositions for declustering of 2D range queries over uncertain space

Abstract: We present a study to show the possibility of using two well-known space partitioning and indexing techniques, kd trees and quad trees, in declustering applications to increase input/output (I/O) parallelization and reduce spatial data processing times. This parallelization enables time-consuming computational geometry algorithms to be applied efficiently to big spatial data rendering and querying. The key challenge is how to balance the spatial processing load across a large number of worker
nodes, given significant performance heterogeneity in nodes and processing skews in the workload.

 

Go Here

 

Büyük Veri, Paralel İşleme ve Akademisyenlik [Link]

Veri Analitiği & Büyük Veri [Link]

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.